home *** CD-ROM | disk | FTP | other *** search
- /************************************************************************
- * *
- * N O T I C E *
- * *
- * Copyright Abandoned, 1987, Fred Fish *
- * *
- * This previously copyrighted work has been placed into the *
- * public domain by the author (Fred Fish) and may be freely used *
- * for any purpose, private or commercial. I would appreciate *
- * it, as a courtesy, if this notice is left in all copies and *
- * derivative works. Thank you, and enjoy... *
- * *
- * The author makes no warranty of any kind with respect to this *
- * product and explicitly disclaims any implied warranties of *
- * merchantability or fitness for any particular purpose. *
- * *
- ************************************************************************
- */
-
-
- /*
- * FUNCTION
- *
- * sqrt double precision square root
- *
- * KEY WORDS
- *
- * sqrt
- * machine independent routines
- * math libraries
- *
- * DESCRIPTION
- *
- * Returns double precision square root of double precision
- * floating point argument.
- *
- * USAGE
- *
- * double sqrt (x)
- * double x;
- *
- * REFERENCES
- *
- * Fortran IV-PLUS user's guide, Digital Equipment Corp. pp B-7.
- *
- * Computer Approximations, J.F. Hart et al, John Wiley & Sons,
- * 1968, pp. 89-96.
- *
- * RESTRICTIONS
- *
- * The relative error is 10**(-30.1) after three applications
- * of Heron's iteration for the square root.
- *
- * However, this assumes exact arithmetic in the iterations
- * and initial approximation. Additional errors may occur
- * due to truncation, rounding, or machine precision limits.
- *
- * PROGRAMMER
- *
- * Fred Fish
- *
- * INTERNALS
- *
- * Computes square root by:
- *
- * (1) Range reduction of argument to [0.5,1.0]
- * by application of identity:
- *
- * sqrt(x) = 2**(k/2) * sqrt(x * 2**(-k))
- *
- * k is the exponent when x is written as
- * a mantissa times a power of 2 (m * 2**k).
- * It is assumed that the mantissa is
- * already normalized (0.5 =< m < 1.0).
- *
- * (2) An approximation to sqrt(m) is obtained
- * from:
- *
- * u = sqrt(m) = (P0 + P1*m) / (Q0 + Q1*m)
- *
- * P0 = 0.594604482
- * P1 = 2.54164041
- * Q0 = 2.13725758
- * Q1 = 1.0
- *
- * (coefficients from HART table #350 pg 193)
- *
- * (3) Three applications of Heron's iteration are
- * performed using:
- *
- * y[n+1] = 0.5 * (y[n] + (m/y[n]))
- *
- * where y[0] = u = approx sqrt(m)
- *
- * (4) If the value of k was odd then y is either
- * multiplied by the square root of two or
- * divided by the square root of two for k positive
- * or negative respectively. This rescales y
- * by multiplying by 2**frac(k/2).
- *
- * (5) Finally, y is rescaled by int(k/2) which
- * is equivalent to multiplication by 2**int(k/2).
- *
- * The result of steps 4 and 5 is that the value
- * of y between 0.5 and 1.0 has been rescaled by
- * 2**(k/2) which removes the original rescaling
- * done prior to finding the mantissa square root.
- *
- * NOTES
- *
- * The Convergent Technologies compiler optimizes division
- * by powers of two to "arithmetic shift right" instructions.
- * This is ok for positive integers but gives different
- * results than other C compilers for negative integers.
- * For example, (-1)/2 is -1 on the CT box, 0 on every other
- * machine I tried.
- *
- */
-
- /*
- * MODIFICATIONS
- *
- * This routine modified to use polynomial, instead of rational,
- * approximation with coefficients
- *
- * P0 0.22906994529e+00
- * P1 0.13006690496e+01
- * P2 -0.90932104982e+00
- * P3 0.50104207633e+00
- * P4 -0.12146838249e+00
- *
- * as given by Hart (op. cit.) in SQRT 0132. This approximation
- * gives around 5 digits correct. Two applications of Heron's
- * approximation will give more then practically achievable
- * 13-15 decimal digits. Multiplications by powers of 2 are
- * replaced by explicit calls to ldexp.
- *
- * Michal Jaegermann, 24 October 1990
- */
-
- #if !defined (__M68881__) && !defined (sfp004)
-
- #include <stdio.h>
- #include <math.h>
- #include "pml.h"
-
- #ifdef OLD
- #define P0 0.594604482 /* Approximation coeff */
- #define P1 2.54164041 /* Approximation coeff */
- #define Q0 2.13725758 /* Approximation coeff */
- #define Q1 1.0 /* Approximation coeff */
-
- #define ITERATIONS 3 /* Number of iterations */
-
- #endif
-
- #define P0 0.22906994529e+00 /* Hart SQRT 0132 */
- #define P1 0.13006690496e+01
- #define P2 -0.90932104982e+00
- #define P3 0.50104207633e+00
- #define P4 -0.12146838249e+00
-
- static char funcname[] = "sqrt";
-
- double sqrt (x)
- double x;
- {
- #ifdef OLD
- int k;
- register int bugfix;
- register int kmod2;
- register int count;
- int exponent;
- double y;
- #else
- int k;
- #endif
- double m;
- double u;
- struct exception xcpt;
-
- if (x == 0.0) {
- xcpt.retval = 0.0;
- } else if (x < 0.0) {
- xcpt.type = DOMAIN;
- xcpt.name = funcname;
- xcpt.arg1 = x;
- if (!matherr (&xcpt)) {
- fprintf (stderr, "%s: DOMAIN error\n", funcname);
- errno = EDOM;
- xcpt.retval = 0.0;
- }
- } else {
- m = frexp (x, &k);
- #ifdef OLD
- u = (P0 + (P1 * m)) / (Q0 + (Q1 * m));
- for (count = 0, y = u; count < ITERATIONS; count++) {
- y = 0.5 * (y + (m / y));
- }
- if ((kmod2 = (k % 2)) < 0) {
- y /= SQRT2;
- } else if (kmod2 > 0) {
- y *= SQRT2;
- }
- bugfix = 2;
- xcpt.retval = ldexp (y, k/bugfix);
- #else
- u = (((P4 * m + P3) * m + P2) * m + P1) * m + P0;
- u = ldexp((u + (m / u)), -1); /* Heron's iteration */
- u += m / u; /* and a part of the second one */
- if (k & 1) {
- u *= SQRT2;
- }
- /*
- * here we rely on the fact that -3/2 and (-3 >> 1)
- * do give different results
- */
- xcpt.retval = ldexp (u, (k >> 1) - 1);
- #endif
- }
- return (xcpt.retval);
- }
-
- double hypot(double x, double y)
- {
- return sqrt(x*x + y*y);
- }
- #endif /* __M68881__, sfp004 */
-
- #ifdef sfp004
-
- __asm("
-
- comm = -6
- resp = -16
- zahl = 0
-
- "); /* end asm */
-
- #endif sfp004
- #if defined (__M68881__) || defined (sfp004)
-
- __asm(".text; .even");
-
- # ifdef ERROR_CHECK
-
- __asm("
-
- _Overflow:
- .ascii \"OVERFLOW\\0\"
- _Domain:
- .ascii \"DOMAIN\\0\"
- _Error_String:
- .ascii \"sqrt: %s error\\n\\0\"
- .even
-
- | m.ritzert 7.12.1991
- | ritzert@dfg.dbp.de
- |
- | /* NAN = {7fffffff,ffffffff} */
- | /* +Inf = {7ff00000,00000000} */
- | /* -Inf = {fff00000,00000000} */
- | /* MAX_D= {7fee42d1,30773b76} */
- | /* MIN_D= {ffee42d1,30773b76} */
-
- .even
- double_max:
- .long 0x7fee42d1
- .long 0x30273b76
- double_min:
- .long 0xffee42d1
- .long 0x30273b76
- NaN:
- .long 0x7fffffff
- .long 0xffffffff
- p_Inf:
- .long 0x7ff00000
- .long 0x00000000
- m_Inf:
- .long 0xfff00000
- .long 0x00000000
- "); /* end asm */
- # endif ERROR_CHECK
-
- __asm(".even
- .globl _hypot
- .globl _sqrt
- _sqrt:
- "); /* end asm */
-
- #endif /* __M68881__ || sfp004 */
- #ifdef __M68881__
-
- __asm("
- fsqrtd a7@(4), fp0 | sqrt
- fmoved fp0,a7@- | push result
- moveml a7@+,d0-d1 | return_value
- "); /* end asm */
-
- #endif __M68881__
- #ifdef sfp004
- __asm("
- lea 0xfffa50,a0
- movew #0x5404,a0@(comm) | specify function
- cmpiw #0x8900,a0@(resp) | check
- movel a7@(4),a0@ | load arg_hi
- movel a7@(8),a0@ | load arg_low
- movew #0x7400,a0@(comm) | result to d0
- .long 0x0c688900, 0xfff067f8 | wait
- movel a0@,d0
- movel a0@,d1
- "); /* end asm */
-
- #endif sfp004
- #if defined (__M68881__) || defined (sfp004)
- # ifdef ERROR_CHECK
- __asm("
- err:
- lea double_max,a0 |
- swap d0 | exponent into lower word
- cmpw a0@(16),d0 | == NaN ?
- beq error_nan |
- cmpw a0@(24),d0 | == + Infinity ?
- beq error_plus |
- swap d0 | result ok,
- rts | restore d0
- ");
- #ifndef __MSHORT__
- __asm("
- error_plus:
- swap d0
- moveml d0-d1,a7@-
- movel #63,_errno | NAN => errno = EDOM
- pea _Overflow | for printf
- bra error_exit |
- error_nan:
- moveml a0@(24),d0-d1 | result = +inf
- moveml d0-d1,a7@-
- movel #62,_errno | NAN => errno = EDOM
- pea _Domain | for printf
- ");
- #else __MSHORT__
- __asm("
- error_plus:
- swap d0
- moveml d0-d1,a7@-
- movew #63,_errno | NAN => errno = EDOM
- pea _Overflow | for printf
- bra error_exit |
- error_nan:
- moveml a0@(24),d0-d1 | result = +inf
- moveml d0-d1,a7@-
- movew #62,_errno | NAN => errno = EDOM
- pea _Domain | for printf
- ");
- #endif __MSHORT__
- __asm("
- error_exit:
- pea _Error_String |
- pea __iob+52 |
- jbsr _fprintf |
- addl #12,a7 |
- moveml a7@+,d0-d1
- ");
- # endif ERROR_CHECK
- __asm("
- rts
-
- .even
- _hypot:
- ");
- #endif /* __M68881__ || sfp004 */
- #ifdef __M68881__
- __asm("
- fmoved a7@(4),fp0 |
- fmulx fp0,fp0 | x**2
- fmoved a7@(12),fp1 |
- fmulx fp1,fp1 | y**2
- faddx fp1,fp0 |
- fsqrtx fp0,fp0 | sqrt( x**2 + y**2 )
- fmoved fp0,a7@- |
- moveml a7@+,d0-d1 | return arg
- ");
- #endif __M68881__
- #ifdef sfp004
- __asm("
- lea 0xfffa50,a0
-
- movew #0x5400,a0@(comm) | load fp0
- .long 0x0c688900, 0xfff067f8
- movel a7@(4),a0@ | load arg_hi
- movel a7@(8),a0@ | load arg_low
-
- movew #0x5480,a0@(comm) | load fp1
- .long 0x0c688900, 0xfff067f8
- movel a7@(12),a0@ | load arg_hi
- movel a7@(16),a0@ | load arg_low
-
- movew #0x0023,a0@(comm)
- .word 0x4a68,0xfff0,0x6bfa | test
-
- movew #0x04a3,a0@(comm)
- .word 0x4a68,0xfff0,0x6bfa | test
-
- movew #0x0422,a0@(comm) | fp0 = fp0 + fp1
- .word 0x4a68,0xfff0,0x6bfa | test
-
- movew #0x0004,a0@(comm) | sqrt(fp0)
- .word 0x4a68,0xfff0,0x6bfa | test
-
- movew #0x7400,a0@(comm) | result to d0/d1
- .long 0x0c688900, 0xfff067f8
- movel a0@(zahl),d0
- movel a0@(zahl),d1
- ");
- #endif sfp004
- #if ( defined (__M68881__) || defined (sfp004) ) && defined (ERROR_CHECK)
-
- __asm("bra err");
-
- #else ERROR_CHECK
-
- __asm("rts");
-
- #endif ERROR_CHECK
-